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1. Introduction

A relevant issue in the context of high energy physics is that extra dimensions provide

alternative ways for breaking gauge symmetries with respect to the famous Higgs mecha-

nism, [1 – 5]. Furthermore, an additional non trivial feature of the Yang-Mills theories in

a compact extra dimension is that the WW and ZZ elastic scattering amplitudes can be

unitarized by the tower of heavy gauge modes, [6 – 9], and the unitarity of the theory is

postponed to a higher scale. This additional scale is related to the fact that the theory

becomes strongly interacting and the number of modes that can contribute to the ampli-

tudes at high energy grows as well. Thus extra dimensional models provide alternative

methods with respect to the standard theory to break the gauge symmetries giving mass

to the gauge bosons and preserve the unitarity of the W and Z scattering at high energy.

Since the spontaneous electroweak symmetry breaking via the Higgs mechanism and the

unitarity restoration via the Higgs boson exchange are the main arguments for the exis-

tence of the Higgs boson, then the Higgs sector can be eliminated in favor of a compact

extra dimensional sector. The class of models, usually formulated in five dimensions based

on this assumption is named Higgsless [8, 10 – 17].
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Extra dimensional extensions of the Standard Model (SM) share some similarities with

strongly interacting models at effective level as can be inferred through the AdS/CFT cor-

respondence [18]. The analogy between the technicolor models and extra dimensional

models arises also by discretizing the extra dimensional theory with the dimensional de-

construction mechanism. In fact the deconstruction mechanism provides a correspondence

at low energies between theories with replicated 4D gauge symmetries G and theories with

a 5D gauge symmetry G on a lattice [19, 25]. We will refer to the models with replicated

gauge symmetries as moose models [26 – 30].

Since in the original versions of Higgsless models the fermions coupled only with the

standard gauge fields, the electroweak parameters ǫ1, ǫ2, ǫ3 or S, T, U , [31 – 33], had only

oblique contributions. These oblique corrections tend to give large and positive contri-

butions to the ǫ3 (or S) parameter, so that it is difficult to conciliate the electroweak

bounds with a delay of the unitarity violation scale, [12, 30]. However a delocalization of

the fermionic fields into the bulk as in [34, 35], that is allowing standard fermions with

direct coupling to all the moose gauge fields as in [36], leads direct contributions to the

electroweak parameters that can correct the bad behavior of the ǫ3 parameter.

The fine tuning which cancels out the oblique and direct contributions to ǫ3 indepen-

dently in each bulk point, that is from each internal moose gauge group, corresponds to the

so called ideal delocalisation of the fermions, [36 – 38]. Therefore, it is worthwhile inves-

tigating whether it is possible to reproduce such an ideal delocalisation starting from the

theoretical assumption of a 5D Dirac sector with an appropriate choice of the boundary

conditions on the branes.

The determination of the low energy observables in extra dimensional models is gener-

ally achieved through a recursive elimination of the heavy Kaluza Klein (KK) excitations

from the equations of motion. However, a much more useful way to reach the effective

theory is described in [39, 12, 13]. This method is broadly inspired by the holographic

technique which allows the reduction of the 5D theory into a four dimensional one [40, 43].

Here we will study the problem of the ǫ3 fine tuning directly in the extra dimensional

formulation of the Higgsless model using the holography as a powerful procedure of calculus.

In fact the bulk physics can be taken into account by solving the bulk equations of motion

with given boundary conditions, so that one is left with a boundary or holographic action,

which is, indeed, a 4D theory related to the original extra dimensional one.

Other solutions to get a suppressed contribution to ǫ3 have been investigated like the

one suggested by holographic QCD, assuming that different five dimensional metrics are

felt by the axial and vector states [44, 47]. However recently it has been shown that the

backgrounds that allow to get a negative oblique contribution to ǫ3 are pathological, since

require unphysical Higgs profile or higher dimensional operators [48].

In this note we consider a 5D version of a linear moose model previously proposed, [28,

36, 49]. The right pattern for electroweak symmetry breaking is obtained by adding to the

SU(2) five dimensional gauge symmetry, extra terms on the branes and boundary conditions

breaking the symmetry to the U(1)em. Then we evaluate the oblique corrections through

the vacuum amplitudes of the standard gauge bosons which can be easily obtained from the

holographic formulation. In general, the results obtained with the holographic procedure
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are in agreement with the continuum limit of the corresponding linear moose model studied

in [36, 49]. In presence of direct couplings of the bulk gauge fields to standard fermions,

effective fermion current-current interactions, which are obtained in the deconstruction

analysis [36], are recovered from the full effective action solving the complete bulk equations

of motion with a suitable perturbative expansion [39].

In section 2 we review the holographic description of the gauge sector and show how

to derive the oblique contributions to the electroweak parameters. In section 3 we perform

a holographic analysis of the fermions in 5D by solving the equations of motion with

suitable boundary conditions and project out the bulk dynamics on the branes, as in [50].

In section 4 we use the bulk solutions obtained for the gauge and fermion fields in the

interaction terms, and we derive the low energy effective action from which we compute

the ǫ parameters. The results obtained in the flat scenario are then extended to the warped

background in section 5. Conclusions are given in section 6.

2. Holographic analysis of the gauge sector

We review in this section the continuum limit of the moose model of [26, 28, 35, 36, 51, 49]

and the holographic approach for gauge fields proposed in [12].

We start from an action based on a 5D Yang-Mills theory defined on a segment, with

SU(2) bulk gauge symmetry and flat metric:

Sbulk
YM = − 1

2g2
5

∫

d4x

∫ πR

0
dyTr[FMN (x, y)FMN (x, y)] , (2.1)

where g5 is the bulk gauge coupling with mass dimension −1/2, FMN = F aMNT a, being

T a the generators of the SU(2) symmetry such that Tr(T aT b) = 1
2δab, T a = τa

2 where τa

are the Pauli matrices and F (A)aMN = AaMN + iǫabcAM
b AN

c with Aa
MN = ∂MAa

N −∂NAa
M .

We will work in the unitary gauge Aa
5 ≡ 0, which gives useful simplifications. Then

integrating by parts the bulk action in eq. (2.1) and neglecting the trilinear and quadrilinear

couplings coming from the non-abelian terms of the field strength, we are lead to a bilinear

action written as a boundary term plus a bulk term [12].

From the bulk term we can get the bulk equations of motion which, in the four mo-

mentum space, for the transverse and longitudinal components of the gauge field, are

respectively (∂5 = ∂y):

(∂2
5 + p2)At

µ(p, y) = 0, ∂2
5Al

µ(p, y) = 0 . (2.2)

Furthermore, as long as one considers processes with all external particles with mass mf

much lighter than the gauge vector mass mA, the longitudinal part of the two point function

yields a suppression of the order (mf/mA)2. Thus, in discussing the electroweak corrections

coming from the extra gauge sector, we will investigate only the transverse components of

the gauge field, [52] (for sake of simplicity from now on we will omit the superscript).

Let us impose the first of the eqs. (2.2) as a constraint, therefore the residual bilinear

part of the 5D action is an holographic term, [12],

S(2)holog
YM = − 1

g2
5

∫

d4p

(2π)4
Tr[Aµ(p, y)∂5A

µ(p, y)]πR
0 . (2.3)
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As said, in addition to this bilinear boundary action obtained imposing the linear equa-

tions of motion eqs. (2.2), we have the trilinear and quadrilinear bulk terms coming from

the non-abelian part of the 5D SU(2) Yang-Mills theory. Anyway they are not involved,

at the leading order, in the electroweak parameter tree level estimation and have weaker

experimental bounds [53].

In order to solve the bulk equations of motion (2.2) we need to assign boundary con-

ditions for each bulk field component. We will fix these conditions by requiring to recover

the SM gauge content at the extremes of the segment (branes). In order to get this,

following [12], we add, besides the brane kinetic terms, mass brane terms for the gauge

fields:

Sbrane
YM = − 1

2g̃2

∫

d4x

∫ πR

0
dyδ(y)Tr[F (A)µν(x, y)F (A)µν (x, y)] (2.4)

− 1

4g̃′2

∫

d4x

∫ πR

0
dyδ(y − πR)F 3µν(x, y)F 3

µν(x, y)

+
c2
1

2g̃2

∫

d4x

∫ πR

0
dyδ(y)Tr[(Aµ − g̃W̃ µ)(Aµ − g̃W̃µ)]

+
c2
2

4g̃′2

∫

d4x

∫ πR

0
dyδ(y − πR)[(A3µ − g̃′Ỹµ)(A3

µ − g̃′Ỹµ) + A1,2µA1,2
µ ] ,

The parameters c1,2 have the dimension of a 4D mass and in the limit c1,2 → ∞ fix the

boundary values of the bulk field to the standard gauge fields W̃µ = W̃ a
µT a and Ỹµ (the

tilde indicates unrenormalized quantities):

A±
µ (x, y)|y=0 ≡ g̃W̃±

µ (x), A±
µ (x, y)|y=πR ≡ 0,

A3
µ(x, y)|y=0 ≡ g̃W̃ 3

µ(x), A3
µ(x, y)|y=πR ≡ g̃′Ỹµ(x) . (2.5)

In this way the standard fields are introduced as auxiliary fields. Though we are considering

the flat metric case, these fields are the analogous of the source fields of the AdS/CFT

correspondence. Indeed, we are imposing standard gauge symmetry SU(2)L on the y = 0

brane, and U(1)Y on the y = πR one.

We are now able to write down the holographic formulation of the model by imposing

the bulk equations of motion given in eqs. (2.2) and the boundary conditions (2.5). The

resulting Lagrangian density in momentum space at quadratic level is

L(2)holog+SM
YM = − g̃′

2g2
5

Ỹµ(p)∂yA
3
µ(p, y)|y=πR +

g̃

2g2
5

W̃ aµ(p)∂yA
a
µ(p, y)|y=0

+
p2

2
W̃ a

µ (p)W̃ aµ(p) +
p2

2
Ỹµ(p)Ỹµ(p) . (2.6)

Let us comment on the relation between this holographic approach and the one in

which one uses the KK expansion in normal modes for the gauge field. In this latter case

the boundary conditions to be imposed are different as can be derived by varying the bulk

action with brane kinetic terms added, [54, 55]. It can be shown that, fixing the bulk field

on the boundary according to eqs. (2.5) is indeed coherent with an effective description in
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terms of Dirichlet and Neumann boundary conditions obtained from the variation of an

extra dimensional theory based on the bulk action with brane kinetic terms. By expanding

the bulk fields in terms of KK eigenfunctions

Aa
µ(p, y) =

∑

n

fa
n(y)Aa(n)

µ (p) , (2.7)

after imposing Neumann conditions on both the branes for the neutral component of the

bulk field as well as Neumann condition on the y = 0 brane and Dirichlet condition on

y = πR brane for the charged components of the bulk field [26], at leading order in g̃2πR/g2
5

(in such a way that the heavy non standard KK mass eigenstates can be neglected), we

obtain

A±
µ (p, 0) ∼ f±

0 (0)W±
µ (p) ∼ ẽ

sθ̃

W̃±
µ (p),

A±
µ (p, πR) ∼ f±

0 (πR)W±
µ (p) ≡ 0,

A3
µ(p, 0) ∼ f3

0 (0)Aµ(p) + f3
1 (0)Zµ(p) ∼ ẽÃµ(p) + ẽ

cθ̃

sθ̃

Z̃µ(p) = g̃W̃ 3
µ(p) ,

A3
µ(p, πR) ∼ f3

0 (πR)Aµ(p) + f3
1 (πR)Zµ(p) ∼ ẽÃµ(p) − ẽ

sθ̃

cθ̃

Z̃µ(p) = g̃′Ỹµ(p) , (2.8)

where we have introduced the SM neutral fields through the standard rotation: W̃ 3
µ =

cθ̃Z̃µ + sθ̃Ãµ, Ỹµ = −sθ̃Z̃µ + cθ̃Ãµ with ẽ = g̃sθ̃ and tθ̃ = tan θ̃ = g̃′/g̃ and, again, the tildes

are for unrenormalized quantities.

We see that the boundary values for the bulk field expressed in terms of the lowest

lying KK modes in eqs. (2.8) correspond, at effective level, to the boundary conditions

given in eqs. (2.5). In other words, the effective holographic Lagrangian for the boundary

fields W̃µ and Ỹµ, which are not the mass eigenstates but linear combinations of all the KK

modes, can be used to describe the lightest states of the KK tower in the limit of heavy

mass of the KK excitations.

2.1 Precision electroweak parameters

Let us now start the evaluation of the oblique corrections at tree level to the SM precision

electroweak parameters by using the holographic Lagrangian density given in eq. (2.6).

Writing the generic solutions of the bulk equations of motion in terms of the interpo-

lating field delocalization functions h(p, y), we get:

A±
µ (p, y) = g̃h±(p, y)W̃±

µ (p) ,

A3
µ(p, y) = g̃hW (p, y)W̃ 3

µ(p) + g̃′hY (p, y)Ỹµ(p)

= ẽhγ(p, y)Ãµ(p) +
ẽ

sθ̃cθ̃

hZ(p, y)Z̃µ(p) , (2.9)

with hγ = hW + hY and hZ = c2
θ̃
hW − s2

θ̃
hY .

From the boundary conditions (2.5) we get the boundary values for the functions

h(p, y):

h±(p, y)|y=0 = hW (p, y)|y=0 = 1, hY (p, y)|y=0 = 0 ,

h±(p, y)|y=πR = hW (p, y)|y=πR = 0, hY (p, y)|y=πR = 1 . (2.10)
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By substituting the solutions (2.9) in the holographic Lagrangian density (2.6), we

can compare the result with the generic extension of the quadratic SM gauge Lagrangian

written in terms of the two point functions

L(2)
eff = g̃′2ΠY Y (p2)ỸµỸµ + g̃2ΠWW (p2)W̃ 3

µW̃ 3µ

+g̃g̃′ΠWY (p2)W̃ 3
µ Ỹµ + 2g̃2Π+−(p2)W̃+

µ W̃−µ . (2.11)

Therefore we get:

ΠWY (p2) = − 1

2g2
5

[hY h′
W + hW h′

Y ]πR
0 , ΠY Y (p2) = − 1

2g2
5

[hY h′
Y ]πR

0 ,

ΠWW (p2) = − 1

2g2
5

[hW h′
W ]πR

0 , Π+−(p2) = − 1

2g2
5

[h+h′
−]πR

0 . (2.12)

where h′ = ∂yh.

The solutions of the equations of motions (2.2) give h±(p, y) ≡ hW (p, y) and therefore

ΠWW (p2) ≡ Π+−(p2), as a consequence of the custodial SU(2) symmetry of the model.

Concerning the oblique corrections, we plug the eqs. (2.12) in the ǫ parameter expres-

sions given in terms of the vacuum polarization amplitudes [33, 31]

ǫoblique
1 = g̃2 ΠWW (0) − Π+−(0)

M̃2
W

, (2.13)

ǫoblique
2 = g̃2 d

dp2
(Π+−(p2) − ΠWW (p2))|p2=0 , (2.14)

ǫoblique
3 = g̃2 d

dp2
ΠWY (p2)|p2=0 , (2.15)

obtaining

ǫoblique
1 = ǫoblique

2 = 0, ǫoblique
3 = − g̃2

2g2
5

d

dp2
[hY h′

W + hW h′
Y ]πR

0,p2=0 . (2.16)

This shows how ǫoblique
3 can be computed by knowing the wave functions of the gauge

bosons and their y-derivatives at the extremes of the segment.

Of course it is possible to get the two point functions without the holographic pre-

scription; in this way we would find that the electroweak parameters can be expressed as

integrals along the extra dimension. For example:

ǫoblique
3 =

g̃2

g2
5

∫ πR

0
dy[hY hW ]p2=0 . (2.17)

Using the bulk equations of motion, the boundary conditions and integrating by parts,

this integral form for the ǫoblique
3 parameter turns out to be equivalent to the one expressed

as boundary terms in eq. (2.16). Notice that in the boundary formulation of the ǫoblique
3 we

need only the boundary values of the h functions and their derivatives at the first order in

p2 whereas in the integral formulation we need the whole bulk profile of the h functions at

zero order in p2.
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In the next section we will consider the fermionic content of the model. Since fermions

are delocalized into the bulk, vertex corrections occur and the direct contributions to the

electroweak parameters must be taken into account. As a consequence, the estimation of the

ǫ parameters is obtained through a general formulation involving the renormalization of the

electroweak observables used in the definition of the electroweak parameters as described

in [56, 57]. The new physics corrections to the quadratic part of the SM Lagrangian can

be encoded in the z coefficients defined as follows:

L(2)
eff =

p2

2
(1 + zγ)ÃµÃµ + p2(1 + zW )W̃+

µ W̃−µ +
p2

2
(1 + zZ)Z̃µZ̃µ − p2zZγÃµZ̃µ

−M̃2
W W̃+

µ W̃−µ − 1

2
M̃2

ZZ̃µZ̃µ . (2.18)

Then, comparing with eq. (2.11) and performing the standard change of basis in the neutral

sector of the gauge fields, we can express the z corrections in terms of the two point

functions:

zγ = 2ẽ2 d

dp2
Πγγ(p2)|p2=0, zW = 2

ẽ2

s2
θ̃

d

dp2
Π+−(p2)|p2=0,

zZ = 2
ẽ2

c2
θ̃
s2
θ̃

d

dp2
ΠZZ(p2)|p2=0, zZγ = − ẽ2

cθ̃sθ̃

d

dp2
ΠZγ(p2)|p2=0, (2.19)

whereas the unrenormalized gauge boson masses are given by

M̃2
W = −2

ẽ2

s2
θ̃

Π+−(0), M̃2
Z = −2

ẽ2

c2
θ̃
s2
θ̃

ΠZZ(0) , (2.20)

while the photon is massless M2
γ = −2ẽ2Πγγ(0) ≡ 0.

All these parameters can be expressed in boundary form thanks to the holographic

formulation given in eq. (2.12).

Let us note that, since the unbroken Uem(1) gauge symmetry guarantees that Πγγ(0) =

0, using the solutions of the bulk equations of motion and the boundary conditions for hW

and hY , the following relation at p2 = 0 holds:

hγ(0, y) = hW (0, y) + hY (0, y) ≡ 1 . (2.21)

This relation will be used in section 4 for the derivation of the direct contributions to the

precision electroweak parameters due to the delocalization of the fermions in the bulk.

2.2 Explicit calculations

Let us now evaluate the electroweak parameters with the explicit solutions of the transverse

components of the bulk gauge fields. The integral expression (2.17) for the ǫ3 parameter

makes the analogy with the deconstruction procedure much more direct. In fact in the

integral expression (2.17) for the ǫ3 parameter, the h functions are involved at the zero

order in p2. So we only need to solve the second order differential equations (2.2) at p2 = 0

and to impose the boundary conditions on the branes. The solutions are:

hY (0, y) =
y

πR
, h±(0, y) = hW (0, y) = 1 − y

πR
. (2.22)
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These functions are the analogous, in the continuum limit, of the variables yi and zi = 1−yi

of the deconstructed formulation of the model given in [28], for which one finds

ǫoblique
3 = g̃2

K
∑

i=1

yi

g2
i

(1 − yi) , (2.23)

where K is the number of sites, gi are the gauge coupling constants of the replicated

gauge groups along the moose chain and yi =
∑i

j=1 f2/f2
j with fj the link variables and

1/f2 =
∑K

j=1 1/f2
j .

By using in (2.23) the matching between the 5D parameters of the discretized theory

(the gauge coupling g5, the lattice spacing a) and the parameters of the 4D deconstructed

theory (the gauge coupling constant along the chain gj , the link couplings fj), namely [49]:

a

g2
5

←→ 1

g2
j

,
1

ag2
5

←→ f2
j , (2.24)

and performing the continuum limit, we get the correspondence between the two descrip-

tions in the case of equal gauge couplings along the chain. In such a case the variable yi is

the discretized analogous of the coordinate y of the fifth dimension in the eq. (2.17).

By substituting eq. (2.22) in (2.17), we recover the well known result [26, 28]:

ǫoblique
3 =

g̃2

g2
5

πR

6
. (2.25)

It is also easy to find out the exact solutions of the bulk equations of motions for the

interpolating field delocalization functions. They take the form:

hY (p, y) =
sin[py]

sin[pπR]
, h±(p, y) = hW (p, y) =

sin[p(πR − y)]

sin[pπR]
, (2.26)

from which it is straightforward to get the same result given in eq. (2.25) for the electroweak

parameter ǫoblique
3 , by using the boundary expression (2.16).

Moreover, by using the exact solutions (2.26) we can compute the two point func-

tions defined in eq. (2.12), and, by comparing with eqs. (2.19)–(2.20), we can extract the

unrenormalized masses:

M̃Z =
v

2

g̃

cθ̃

, M̃W =
v

2
g̃ , (2.27)

where v ≡ 2
g5

√
πR

, and the z corrections:

zγ =
g̃2πRs2

θ̃

g2
5

, zW =
g̃2πR

3g2
5

,

zZ =
g̃2πR(c4

θ̃
− c2

θ̃
s2
θ̃
+ s4

θ)

3c2
θ̃
g2
5

, zZγ =
g̃2πRsθ̃(−c2

θ̃
+ s2

θ̃
)

2cθ̃g
2
5

. (2.28)

The above expressions are in agreement with those obtained by performing the continuum

limit of the deconstructed moose model in [36].

Let us notice that the additional electroweak parameters introduced in [17], namely

X,Y,W , are suppressed by a factor M2
W R2 with respect to S, while V = 0 due to the

custodial symmetry of the model.
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3. Holographic analysis of the fermionic sector

For what concerns fermions in one extra dimension we can carry out the procedure given

in [50], starting from the following bulk action for the 5D Dirac field, in the unitary gauge

(A5 = 0):

Sbulk
ferm =

1

ĝ2
5

∫

d4x

∫ πR

0
dy

{

iΨ̄γµDµΨ +
1

2
[Ψ̄γ5∂5Ψ − ∂5Ψ̄γ5Ψ] − MΨ̄Ψ

}

, (3.1)

where ĝ5 is a parameter - in general different from the bulk gauge coupling g5 - with mass

dimension −1/2, M is a constant mass for the bulk fermions and

DµΨ(x, y) =
(

∂µ + iTaA
a
µ(x, y) + iYLA3

µ(x, πR)
)

Ψ(x, y) , (3.2)

with YL = (B − L)/2 the left hypercharge. The hypercharge contribution to the covariant

derivative appears as a non-local term along the extra dimension since it is evaluated in

y = πR.

Performing the variational analysis of the fermionic action, the bulk equations of

motion for a free Dirac field written in terms of the left and right handed components:

Ψ = ψL + ψR with γ5ψL,R = ∓ψL,R, are, in the momentum space:

6pψL(p, y) + (∂5 − M)ψR(p, y) = 0, 6pψR(p, y) − (∂5 + M)ψL(p, y) = 0 . (3.3)

The left and right handed components of the bulk Dirac field result to be described by a

system of two coupled first order differential equations that mix the two chiral components:

however the system can be decoupled acting on the previous eqs. (3.3) with the operators

(∂5 + M) and (∂5 − M) respectively. Then, both right and left handed fields satisfy the

second order differential equation

(∂2
5 + ω2)ψL,R = 0 where ω =

√

p2 − M2 . (3.4)

3.1 Boundary conditions for fermions

We generalize the procedure described in the gauge sector to determine the boundary values

for bulk fermions; in fact, following [58], we add to the bulk action (3.1) the brane action

Sbrane
ferm =

∫

d4x

∫ πR

0
dyδ(y)

[

q̄LiγµDµqL +
1

ĝ2
5

(

tL(ψ̄RqL + q̄LψR) − 1

2
Ψ̄Ψ

)]

+δ(y − πR)

[

q̄RiγµDµqR +
1

ĝ2
5

(

tR(q̄RψL + ψ̄LqR) − 1

2
Ψ̄Ψ

)]

, (3.5)

which contains kinetic terms for the interpolating brane fields qL and qR, their couplings

to the bulk Dirac field Ψ and pseudo-mass terms for the bulk fermion field. In agreement

with the gauge symmetries on the branes, we have

DµqL|y=0 =
(

∂µ + ig̃T aW̃ a
µ + ig̃′YLỸµ

)

qL ,

DµqR|y=πR =
(

∂µ + ig̃′T 3Ỹµ + ig̃′YLỸµ

)

qR . (3.6)
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We have allowed different couplings tL,R between the right and left handed brane fields

and the bulk fermions, [51, 49]. They parameterize the delocalization in the bulk of the

brane fermions and, as we will see, are responsible for the fermion masses. The couplings

tL,R can in general be different for each flavor in order to reproduce the fermion mass

spectrum. Since this is not the aim of this paper, for sake of simplicity, we will assume

universal tL,R and an implicit sum over the flavors.

Let us now perform the variational analysis on the branes for the total action Sbulk
ferm +

Sbrane
ferm with fixed fields δqL = δqR ≡ 0. The coefficients of the variations δψ̄R in y = πR

and of δψ̄L in y = 0 are automatically vanishing whereas the coefficients of the variation

δψ̄L in y = πR and δψ̄R in y = 0 fix the boundary values of the two chiral bulk spinors:

ψL(p, 0) ≡ tLqL(p), ψR(p, πR) ≡ tRqR(p) . (3.7)

Thus, the degrees of freedom in terms of which we can eliminate the bulk field in the

holographic prescription are the 4D fields qL and qR which, indeed, live on the branes

y = 0 and y = πR respectively. Note that, with this choice, we get the same scenario of

the moose model with direct couplings for the fermions [36], where qL and qR correspond

to the standard left and right handed fermions.

Once we have fixed the boundary values of the bulk fields we can determine the explicit

solutions of the differential equations (3.3) with boundary conditions (3.7), which are

ψL(p, y) = fL(p, y)tLqL(p) + 6pπRf̃L(p, y)tRqR(p),

ψR(p, y) = fR(p, y)tRqR(p) + 6pπRf̃R(p, y)tLqL(p) , (3.8)

with

fL(p, y) =
ω cos[ω(πR − y)] + M sin[ω(πR − y)]

ω cos[πRω] + M sin[πRω]
,

f̃L(p, y) =
1

πR

sin[ωy]

ω cos[πRω] + M sin[πRω]
,

fR(p, y) =
ω cos[ωy] + M sin[ωy]

ω cos[πRω] + M sin[πRω]
,

f̃R(p, y) =
1

πR

sin[ω(πR − y)]

ω cos[πRω] + M sin[πRω]
. (3.9)

At O(p2) we get:

ψL(p, y) ∼ tLqL(p)e−My+ 6ptRqR(p)
sinh[My]

M
e−MπR,

ψR(p, y) ∼ tRqR(p)eM(y−πR)+ 6ptLqL(p)
sinh[M(y − πR)]

M
e−MπR . (3.10)

Let us note that we have non vanishing right and left handed contributions in the y = 0

and y = πR branes respectively. The particular solution with null bulk mass, M = 0, is

ψL(p, y) ∼ tLqL(p)+ 6pytRqR(p), ψR(p, y) ∼ tRqR(p)+ 6ptLqL(p)(πR − y). (3.11)
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Hence the two components of the Dirac field have a flat profile along the extra dimension

at zero order in p. A study of the phenomenological implications of the M parameter is

developed in [50].

The effective Lagrangian can be deduced after the normalization of the kinetic term

as we will see in the following section.

4. The interaction

So far we have derived the holographic description of the fermionic sector by imposing

the chiral equations of motion (3.3) and the boundary conditions (3.7), but we have not

considered the interaction with the gauge fields. In fact, in presence of covariant derivatives

in the bulk action (3.1), the interaction terms are not eliminated by the equations of motion.

By applying the holographic prescription, the residual fermionic action terms of the theory

are

Sholog+brane
ferm = Sbrane

ferm −
∫

d4p

(2π)4

∫ πR

0

dy

ĝ2
5

Ψ̄(p, y)γµ

[

Aµ(p, y) +
g̃′

2
(B − L)Ỹµ(p)

]

Ψ(p, y) ,

(4.1)

where Sbrane
ferm is evaluated by using the (3.8) solutions.

Let us observe that the B−L interaction described in eq. (4.1), coming from the covari-

ant derivative term (3.2), appears as a non local interaction term in the fifth dimension. A

way to generate this interaction through a local bulk dynamics is to introduce an additional

gauge symmetry U(1)B−L in the bulk with gauge coupling g′5. In analogy with eq. (2.4),

the related bulk field B(x, y) is fixed on both the boundaries by brane mass terms (in

the limit of large mass) in order to obtain the boundary conditions B(x, y)|y=0,πR = g̃′Ỹ.

Since the boundary value for the B(x, y) is equal on both branes, its delocalization function

hB−L(p, y) at p2 = 0 is flat, that is hB−L(0, y) = 1. Therefore, the Dirac bulk field has a

local 5D interaction that, at effective level, reproduces the one given in eq. (4.1). In fact,

as we shall see in the following analysis, the low energy effective interaction Lagrangian at

leading order in p2 is described in terms of the delocalization functions h(0, y). Moreover,

the holographic term of the U(1)B−L bulk theory, analogous of the one in eq. (2.3),

Sholog
B−L = − 1

2g′25

∫

d4p

(2π)4
[Bµ(p, y)∂5B

µ(p, y)]πR
0 (4.2)

can be neglected if we suppose g′5 ≫ g5. In conclusion, the low energy limit of the model

with a local bulk U(1)B−L interaction, is the same of the non local one that we have studied.

However the model with the additional U(1)B−L symmetry in the bulk and its phenomeno-

logical implications deserve a dedicated study, even though the oblique corrections to the

ǫ3 parameter are unaffected by the extra B − L factor [48].

In order to evaluate the low energy effective Lagrangian, we plug the generic solution

of the equations of motion, eqs. (3.8), into the eq. (4.1). Neglecting again the p · A terms

– 11 –
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since we are considering only the transverse components of the bulk field, we get

Lholog+brane
ferm =

πR

ĝ2
5

t2
Lf̃R(p, 0)q̄L(p) 6pqL(p) +

πR

ĝ2
5

t2
Rf̃L(p, πR)q̄R(p) 6pqR(p)

+
tLtR

2ĝ2
5

[fR(p, 0) + fL(p, πR)] (q̄L(p)qR(p) + q̄R(p)qL(p))

+q̄L(p)γµ

[

pµ − g̃W̃µ(p) − g̃′

2
(B − L)Ỹµ(p)

]

qL(p)

+q̄R(p)γµ

[

pµ − g̃′Ỹµ(p) − g̃′(B − L)

2
Ỹµ(p)

]

qR(p)

−
∫ πR

0

dy

ĝ2
5

(

t2
Lf2

L(p, y) + (pπR)2t2
Lf̃2

R(p, y)
)

q̄L(p)γµ ×

×
[

Aµ(p, y) +
g̃′

2
(B − L)Ỹµ(p)

]

qL(p)

−
∫ πR

0

dy

ĝ2
5

(

t2
Rf2

R(p, y) + (pπR)2t2
Rf̃2

L(p, y)
)

q̄R(p)γµ ×

×
[

Aµ(p, y) +
g̃′

2
(B − L)Ỹµ(p)

]

qR(p) .

where Ỹµ = ỸµT 3. Then we will use the generic solutions of the bulk equations of motion

for the bulk gauge fields given in eqs. (2.9), in order to deal only with the gauge fields W̃

and Ỹ . Notice that, in presence of direct couplings of the bulk gauge fields to standard

fermions, since the simplest holographic approach consists in solving the free equations of

motion for the fields, effective fermion current-current interactions, which are obtained in

the deconstruction analysis [36], are not recovered. The full effective action could be built

solving the complete bulk equations of motion with a suitable perturbative expansion [39].

As pointed out in the numerical analysis performed in [36], the current-current terms, in

the region of the parameter space allowed by the precision electroweak data, are negligible.

For this reason we have only considered the free equations of motion for the bulk fields.

Notice also that, within this approach, the kinetic terms for the fermions no longer

come from the bulk action but they come from the boundary kinetic terms and from the

pseudo-mass terms of the brane action Sbrane
ferm , that is from the terms of the type q̄Ψ or Ψ̄Ψ

in eq. (3.5). This implies that we have, at O(p2),

Lkin
ferm ∼ q̄L 6p

(

1 + t2
L

πR

ĝ2
5

f̃R(0, 0)

)

qL + q̄R 6p
(

1 + t2
R

πR

ĝ2
5

f̃L(0, πR)

)

qR . (4.3)

In order to have canonical kinetic terms, a normalization of the brane interpolating

fields is necessary:

qL → qL
√

1 + t2
L

πR
ĝ2

5

f̃R(0, 0)
, qR → qR

√

1 + t2
R

πR
ĝ2

5

f̃L(0, πR)
. (4.4)

Using the properties of the f and f̃ functions given in appendix A, the normalization factor

can be written in integral form

qL,R → qL,R
√

1 +
∫ πR
0 dy bL,R(y)

, (4.5)
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where

bL,R(y) = t2
L,R

f2
L,R(0, y)

ĝ2
5

. (4.6)

In the form (4.5) the relation between the holographic procedure and the continuum

limit of the deconstructed version of the model is much more evident since
∫

dy → a
∑K

i=1

, bL(y) → bi/a and bR(y) → b′i/a where a is the lattice spacing [36, 49].

After the normalization (4.4), defining the electric charge as Q = T 3 + B−L
2 , and using

eq. (2.21), we can extract from the effective Lagrangian (4.3) the lowest order interaction

terms:

Lferm = −ẽQÃµq̄γµq − ẽ

sθ̃cθ̃

Z̃µq̄γµ

{

T 3 1 − γ5

2

(

1 − bL

2

)

− T 3 1 + γ5

2

bR

2
− s2

θ̃
Q

}

q

−
[

ẽ

sθ̃

√
2
W̃−

µ q̄dγ
µ

{

1 − γ5

2

(

1 − bL

2

)

− 1 + γ5

2

bR

2

}

qu + h.c.

]

, (4.7)

where q = qL + qR, and the corrections to the electroweak currents are given by

bL =
2
∫ πR
0 dy bL(y)hY (0, y)

1 +
∫ πR
0 dy bL(y)

, bR =
2
∫ πR
0 dy bR(y)hY (0, y)

1 +
∫ πR
0 dy bR(y)

. (4.8)

The bR parameter gives rise to charged and neutral right handed currents coupled

with the SM gauge bosons and for this reason it has phenomenologically strong bounds

related to the b → sγ process, [59], and the µ decay, [60]. Allowing different brane coupling

coefficients tL and tR for the qL and qR four dimensional fermions, we get different values

for bL and bR. In particular, a small brane coupling coefficient tR with respect to tL

suppress the bR contribution. In the following phenomenological analysis we will neglect

the tR contribution.

After identifying the physical parameters as in [57] and following the procedure used

in [36], that is identifying the physical fields by diagonalizing L(2)
eff in eq. (2.18),

Ãµ =

(

1 − zγ

2

)

Aµ + zZγZµ , W̃±
µ =

(

1 − zW

2

)

W±
µ , Z̃µ =

(

1 − zZ

2

)

Zµ , (4.9)

we can derive the expression for the ǫ3 parameter, including the oblique and direct con-

tributions. By taking only the leading order in t2
LπR/ĝ2

5 and in the limit g̃2πR/g2
5 ≪ 1,

corresponding to g̃2/g2
i ≪ 1 in the deconstructed version, we get:

ǫ3 =

∫ πR

0
dyhY (0, y)

{

g̃2

g2
5

hW (0, y) − bL(y)

}

. (4.10)

The fermion contribution contains bL(y), given in eq. (4.6), and turns out to be proportional

to the square of the left-handed fermion interpolating function at leading order in p2. Notice

that, as already stated for the oblique corrections, also the direct contribution to ǫ1 and

ǫ2 parameters vanishes because the corrections to the fermionic currents do not violate the

custodial SU(2) symmetry of the model.

Eq. (4.10) is the continuum analogous of the ǫ3 parameter found in the linear moose

with direct couplings of the left handed fermions, [36].
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The ideal fermionic delocalization, corresponding to vanishing ǫ3, that is the bulk

profile fL(0, y) that makes the integrand of eq. (4.10) null in every bulk point y, is related

to the bulk delocalization profile hW of the W̃ interpolating field through the following

relation 1

bL(y) = t2
L

f2
L(0, y)

ĝ2
5

=
g̃2

g2
5

hW (0, y) ∀y ∈ [0, πR] . (4.11)

Using the explicit solution for hW given in eq. (2.22), we find that the ideal delocalization

should be given by

fL(0, y) ∝
√

1 − y

πR
. (4.12)

However this ideal delocalization is not allowed by the equations of motion for the Dirac

bulk field independently from the assumed bulk mass as can be checked by eq. (3.9). This

result has already been found in [49].

Since the ideal delocalization is not allowed, the remaining possibility to get a zero

new physics contribution to ǫ3 is to ask for a global cancellation, that is a vanishing ǫ3

without requiring the integrand of eq. (4.10) to be zero. This links the parameters of the

gauge sector to the fermionic ones as shown in [34, 35, 49].

As a last point we note that, by keeping tR 6= 0, after the normalization (4.5) of the

interpolating fermionic fields, we get the following Dirac mass term

Lmass
ferm =

1

2

tRtL

ĝ2
5





fR(0, 0) + fL(0, πR)
√

1 +
∫ πR
0 dy bL(y)

√

1 +
∫ πR
0 dy bR(y)



 (q̄LqR + q̄RqL) . (4.13)

Since we are working in the limit t2
L,RπR/ĝ2

5 ≪ 1 we find that the 4D mass is m =
tLtR

ĝ2

5

exp (−MπR). As already noticed, [51, 49], assuming the ǫ3 global cancellation, the top

mass value cannot be reproduced without allowing for a microscopical Lorentz invariance

breaking along the extra dimension.

5. Warped scenario

5.1 Holographic analysis for the gauge sector

Let us now extend the holographic analysis for the gauge sector to the case of Randall-

Sundrum (RS) metric with warp factor k:

ds2 =
1

(kz)2
(dx2 − dz2) , (5.1)

so that

Sbulk
YM = − 1

2g2
5

∫

d4x

∫ L1

L0

dz

(

1

kz

)

Tr[FMN (x, z)FMN (x, z)] , (5.2)

where L0 and L1 are the brane locations.

1A similar relation between the wave function of the ordinary fermions and the wave function of the

standard W boson is suggested in [37]

– 14 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
3

The bulk equations of motion in the momentum space, separating the longitudinal and

the transverse components of the gauge field, are

(D2
5 + p2)At

µ(p, z) = 0, D2
5A

l
µ(p, z) = 0 , (5.3)

where

D2
5 = z∂5

(

1

z
∂5

)

. (5.4)

Considering only the transverse components and imposing the equations of motion as

a constraint to the 5D Yang-Mills action in the RS metric, we are left with the holographic

Lagrangian

L(2)holog
YM = − 1

2g2
5

1

kz
Aaµ∂5A

a
µ|z=L1

+
1

2g2
5

1

kz
Aaµ∂5A

a
µ|z=L0

, (5.5)

where, as in the flat case, we are neglecting the trilinear and quadrilinear terms of this

non-abelian 5D SU(2) Yang-Mills theory.

For what concerns the boundary conditions we add to the warped action in eq. (5.2)

the same brane terms of the flat case, given in eq. (2.4), so that in the limit c1,2 → ∞
we get the same boundary values (2.5) for the bulk field up to a redefinition of the brane

locations

A±
µ (x, z)|z=L0

≡ g̃W̃±
µ (x), A±

µ (x, z)|z=L1
≡ 0,

A3
µ(x, z)|z=L0

≡ g̃W̃ 3
µ(x), A3

µ(x, z)|z=L1
≡ g̃′Ỹµ(x) , (5.6)

and a new definition of the gauge couplings in order to keep track of the metric induced

on the branes: g̃ → g̃
√

kL0, g̃′ → g̃′
√

kL1.

Imposing the bulk equations of motion (5.3), and the boundary values of the bulk

field on the branes (5.6), the holographic formulation of the model in warped space-time,

including also the brane kinetic terms, is

L(2)holog+SM
YM = − g̃′

2g2
5

[

1

kz
Ỹµ(p)∂5A

3
µ(p, z)

]

z=L1

+
g̃

2g2
5

[

1

kz
W̃ aµ(p)∂5A

a
µ(p, z)

]

z=L0

+
p2

2
W̃ a

µ (p)W̃ aµ(p) +
p2

2
Ỹµ(p)Ỹµ(p) . (5.7)

By expressing the generic solutions of the bulk equations of motion in terms of the

delocalization functions as in eq. (2.9), the warped analogous of the vacuum polarization

functions, given in eqs. (2.12), contain the warp factor 1
kz , that is:

ΠWY (p2) = − 1

2g2
5

[

1

kz
(hY h′

W + hW h′
Y )

]L1

L0

, ΠY Y (p2) = − 1

2g2
5

[

1

kz
(hY h′

Y )

]L1

L0

,

ΠWW (p2) = − 1

2g2
5

[

1

kz
(hW h′

W )

]L1

L0

, Π+−(p2) = − 1

2g2
5

[

1

kz
(h+h′

−)

]L1

L0

, (5.8)

and the identity Π(p2)WW ≡ Π(p2)±∓ still holds due to the custodial symmetry. Hence,

the oblique contributions to the ǫ parameters are

ǫoblique
1 = 0, ǫoblique

2 = 0, ǫoblique
3 = − g̃2

2g2
5

d

dp2
[
1

kz
(hY h′

W + hW h′
Y )]L1

L0,p2=0
. (5.9)
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Also in the warped scenario the ǫoblique
3 parameter can be expressed in integral form, that

is

ǫoblique
3 =

g̃2

g2
5

∫ L1

L0

dz
1

kz
[hY hW ]p2=0 , (5.10)

for which it is sufficient to solve the equations of motion at p2 = 0. In this limit the differ-

ential equation to solve is simply ( 1
kzh′

Y (W ))
′ ≡ 0, and, imposing the boundary conditions,

the solutions are

hY (0, z) =
L2

0 − z2

L2
0 − L2

1

, h±(0, z) = hW (0, z) =
L2

1 − z2

L2
1 − L2

0

. (5.11)

In order to evaluate the electroweak parameters coming from the bulk gauge sector we

need the exact solutions of the equations of motion (5.3) for the h functions. These are

given in terms of the Bessel functions J1 and Y1:

hY (p, z) =
z

L1

J1[pz]Y1[pL0] − J1[pL0]Y1(pz)

J1[pL1]Y1[pL0] − J1[pL0]Y1[pL1]
,

h±(p, z) = hW (p, z) =
z

L0

J1[pz]Y1[pL1] − J1[pL1]Y1[pz]

J1[pL0]Y1[pL1] − J1[pL1]Y1[pL0]
. (5.12)

We can now evaluate the two point functions given in eqs. (5.8). For instance:

ΠWY (p2) =
2

kg2
5πL0L1

1

J1[pL0]Y1[pL1] − J1[pL1]Y1[pL0]
, (5.13)

and from eq. (5.9), we get

ǫoblique
3 =

g̃2

4kg2
5

L4
1 − L4

0 − 4L2
0L

2
1 log[L1/L0]

(L2
1 − L2

0)
2

. (5.14)

Of course this result, which is in agreement with [28], is the same obtained by using the

zero order solution (5.11) for the h functions in the integral form (5.10) of the ǫ3 parameter.

Moreover, we can evaluate the z parameters, which are needed for the determination

of the non oblique contributions to ǫ3 coming from the bulk Dirac sector. Plugging the

vacuum amplitudes of the warped case in eqs. (2.19), we obtain

zγ =
g̃2s2

θ̃

kg2
5

log

[

L1

L0

]

zW = − g̃2

4kg2
5

L4
0 − 4L2

0L
2
1 + 3L4

1 + 4L4
1 log[L0/L1]

(L2
0 − L2

1)
2

,

zZ =
g̃2

4kc2
θ̃
g2
5

(

L4
0 − L4

1 − 2(L2
0 − L2

1)
2c2θ̃ − 4 log[L0/L1]

)

(L2
1c

2
θ̃
+ L2

0s
2
θ̃
)2

(L2
0 − L2

1)
2

,

zZγ =
g̃2sθ̃

2kcθ̃g
2
5

L2
0 − L2

1 − 2 log[L0/L1](L
2
1c

2
θ̃
+ L2

0s
2
θ̃
)

L2
0 − L2

1

, (5.15)

and the unrenormalized square masses have the same expression given in (2.20) with v2 ≡
8/(k(L2

1 − L2
0)g

2
5).
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Using the leading order behavior in p2 for the functions h(p, y), it can be noted that,

both in the flat and in the warped scenario, the eqs. (2.9) reproduce the same solutions

obtained with the heavy mode elimination from the equations of motion used in the de-

constructed version of the model, [36], extrapolated to the continuum.

5.2 Fermions in warped scenario

Let us now consider fermions in the warped metric in order to find the holographic de-

scription and obtain the effective Lagrangian. Defining c = M/k, the variation of the bulk

action, (for a review see for example [61]), leads to the following bulk equations of motion

for the left-handed and the right-handed components of the Dirac field

6pψL(p, z) +

(

∂5 −
c + 2

z

)

ψR(p, z) = 0, 6pψR(p, z) −
(

∂5 +
c − 2

z

)

ψL(p, z) = 0 . (5.16)

As in the flat scenario, these first order differential equations can be decoupled in two

second order differential equations, one for the left handed spinor and one for the right

handed spinor. The solutions are given in terms of Bessel functions as in the warped gauge

sector. The boundary conditions are fixed by adding the brane action

Sbrane
ferm =

∫

d4x

∫ L1

L0

dz

{

δ(z − L0)

[

q̄LiγµDµqL +
1

(kz)4
1

ĝ2
5

(

tL(ψ̄RqL + q̄LψR) − 1

2
Ψ̄Ψ

)]

+ δ(z − L1)

[

q̄RiγµDµqR +
1

(kz)4
1

ĝ2
5

(

tR(q̄RψL + ψ̄LqR) − 1

2
Ψ̄Ψ

)]}

. (5.17)

The values of the bulk fields on the branes are given in terms of the interpolating brane

fields

ψL(p, L0) ≡ tLqL(p), ψR(p, L1) ≡ tRqR(p) . (5.18)

The generic solutions for the bulk Dirac field can always be written in the same form

as for the flat case, given in eqs. (3.8), where the dimensional parameter πR, used in order

to give the same dimensionality to the f and the f̃ , can be thought of, for example, the

characteristic length of the extra dimension in the RS metric (πR = L1 − L0).

In the p → 0 limit the two first order differential equations (5.16) are decoupled for

the left and right-handed spinors and the corresponding delocalization functions are given

by

fL(0, z) = (
z

L0
)2−c, fR(0, z) = (

z

L1
)2+c . (5.19)

Following the same procedure as in the flat scenario from the interaction terms, we

get:

Sholog+brane
ferm = Sbrane

ferm −
∫

d4p

(2π)4

∫ L1

L0

dz

ĝ2
5(kz)4

Ψ̄(p, z)γµ × (5.20)

×
[

Aµ(p, z) +
g̃′

2
(B − L)Ỹµ(p)

]

Ψ(p, z) .
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It is easy to prove that, at order O(p2) and with canonically normalized kinetic terms, the

neutral and charged interactions are described by the eq. (4.7) where the corrections are

given by the same expressions (4.8) as in the flat case, with

bL(z) = t2
L

f2
L(0, z)

ĝ2
5(kz)4

=
t2

L

ĝ2
5

(

1

kL0

)4 (

L0

z

)2c

,

bR(z) = t2
R

f2
R(0, z)

ĝ2
5(kz)4

=
t2

R

ĝ2
5

(

1

kL1

)4 (

L1

z

)−2c

. (5.21)

Neglecting the tR contribution and following the same procedure as in the flat case, we

find

ǫ3 =

∫ L1

L0

dzhY (0, z)

{

1

kz

g̃2

g2
5

hW (0, z) − bL(z)

}

. (5.22)

Hence the ideal cancellation for this parameter is obtained when

hW (0, z) =

(

g2
5

g̃2

)

kzbL(z) . (5.23)

By considering the behaviour in z of bL(z) given in eq. (5.21), and that of hW (0, z)

given in eq. (5.11), from the condition eq. (5.23) we may argue that the ideally delocalized

left-handed fermions could be obtained with the choice c = −1
2 , [34]. Nevertheless, because

of the constant term in hW , to satisfy exactly the condition (5.23) we must require L1 = 0

and L0 = (t2
Lg2

5/(g̃
2ĝ2

5))
1/3/k. This means an inversion of the branes and a singular metric

on z = L1 = 0 because of the curvature factor 1
kz , [49]. So, also in the case of RS warped

metric, it is not possible to link the delocalization functions of the gauge boson and of the

left-handed fermion in such a way to satisfy the bulk equations of motion and the ideal

cancellation request.

The possibility of a global cancellation between the gauge and fermion contributions

to ǫ3 is obviously viable also for the warped metric case [34 – 36, 49].

6. Conclusions

The holographic prescription applied to the five dimensional Dirac theory, as well as to the

five dimensional Yang-Mills theory, offers an alternative approach to the deconstruction

analysis of the Higgsless models for studying low energy effective Lagrangians. The holo-

graphic technique used here is equivalent to the elimination of the fields of the internal sites

of the moose in terms of the light fields W̃ and Ỹ [36, 49]. This last procedure can generate

also current-current interactions in the low energy Lagrangian. These terms are absent in

the simplest holographic analysis since one solves the free equations of motions for the

bulk field. However following [39] it could be possible to reproduce also the current-current

interaction terms with a suitable perturbative approach. The aforementioned equivalence

has been shown in this paper, neglecting current-current terms, by studying a minimal

Higgsless model based on the symmetry SU(2) broken by boundary conditions in the limit

g̃2πR/g2
5 ≪ 1 which corresponds in the deconstructed theory to the limit g̃2/g2

i ≪ 1 where

gi is the coupling constant of the gauge group of the i-th site.
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In particular we have shown that though an ideal delocalization of the fermions along

the extra dimension is not allowed by the bulk equations of motion, whatever the metric, a

global cancellation of the ǫ3 parameter is possible, and therefore the electroweak constraints

can be satisfied. In the 5D formulation of the model there is still an interaction which

appears to be non local in the fifth dimension. This non-locality could be eliminated

by extending the 5D symmetry to SU(2) × U(1)B−L and asking for suitable boundary

conditions.
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A. Some useful identities

Let us write the bulk chiral fermions in terms of two degrees of freedom qL and qR with left and

right chirality respectively as

ψL(p, y) = fL(p, y)tLqL(p) + 6pπRf̃L(p, y)tRqR(p),

ψR(p, y) = fR(p, y)tRqR(p) + 6pπRf̃R(p, y)tLqL(p) . (A.1)

Taking into account eqs. (3.3), the functions fL,R and f̃L,R satisfy the following differential equations

tLfL + πR(∂5 − M)tRf̃R = 0, p2πRtRf̃R − (∂5 + M)tLfL = 0,

tRfR − πR(∂5 + M)tLf̃L = 0, p2πRtLf̃L + (∂5 − M)tRfR = 0, (A.2)

which can be decoupled as

f ′′

L,R + ω2fL,R = 0, f̃ ′′

L,R + ω2f̃L,R = 0 , (A.3)

in analogy with eq. (3.4).

Furthermore multiplying the first of eqs. (A.2) by fL, integrating over y, and using the third

of eq. (A.2) we get the following useful identity

∫ πR

0

dyf2

L(p, y) = −πR[fL(p, y)f̃R(p, y)]πR
0

+ (πR)2p2

∫ πR

0

dyf̃2

R(p, y) . (A.4)

In analogous way by multiplying the second of eqs. (A.2) by fR, integrating over y, and using the

forth of eq. (A.2) we get

∫ πR

0

dyf2

R(p, y) = πR[fR(p, y)f̃L(p, y)]πR
0

+ (πR)2p2

∫ πR

0

dyf̃2

L(p, y) , (A.5)

By evaluating eq. (A.4)–(A.5) at p = 0, taking into account the boundary conditions eqs. (3.7)

which imply that fL(p, 0) = fR(p, πR) = 1, we get

∫ πR

0

dyf2

L(0, y) = −πR[fL(0, y)f̃R(0, y)]πR
0

= πRf̃R(0, 0),

∫ πR

0

dyf2

R(0, y) = πR[fR(0, y)f̃L(0, y)]πR
0

= πRf̃L(0, πR) . (A.6)
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